TECHNOLOGY-12/13

SELECTIVE UNIT 5 (S05)

(Beginning Programming)
(JULY 2010)
Unit Statement: This unit provides the student with the techniques necessary to write well-documented, structured computer programs. Examples involving if-then statements, repetition, arrays, functions, and records will be used. The unit is designed to promote good programming practices and to introduce a student to the concept of computer programming.
There is a large variety of suitable programming languages available to use during this unit, examples include, but are not limited to, C, visual basic, and Java. A choice should be made based on the experience of the teacher and/or interest of the student.
Necessary math skills: It is strongly advised that this unit is only engaged for students currently in Mathematics-13 or higher due to the math skills needed to solve the problems in programming exercises. A common reason for a student not to succeed in programming is the lack of math skills needed to write programming algorithms.
Essential Outcomes: (assessed for mastery)
1. The Student Will use pseudo code, flowcharts, or other graphical representations to outline algorithms used, which will be written before programming is commenced.
2. TSW use standard I/O (input/output) and file I/O.

3. TSW employ different forms of iteration (repeat-until, while-do, count control) in simple programs.

4. TSW demonstrate and explain the concept of arrays.

5. TSW demonstrate and explain the concept of records or equivalent data structures in simple programs...
6. TSW use modularization (function usage) as a means of dividing a problem into subtasks.

7. TSW develop algorithms to solve complex problems.

8. TSW write well-documented, structured code.

Introduced & Practiced:

1. The Student Will explain the concept of pointers.

2. TSW describe the concepts multidimensional arrays.

Suggested Materials/Software:
Internet Browser Software

Microsoft Visual Studio (compiles C, Visual Basic, and C++), free download from http://www.microsoft.com/express/download/
Suggested Websites & Activities:

Microsoft Visual Studio (compiles C, Visual Basic, and C++), free download from http://www.microsoft.com/express/download/
Have students debug each other’s code.

Have students compare algorithms and justify choices made.
Assessment Rubric found on following page…………

Assessment Rubric – S05 – Beginning Programming
The use of the following checklist is suggested, but not mandatory. Rather it is a tool to assess students on essential outcomes. ‘A’ level mastery means that a student has mastered all essential parts of the unit at an appropriate high level. The student consistently demonstrated noteworthy achievement of high quality, particularly in the higher order thinking or performance skills. ‘B’ level mastery means that a student has mastered all essential parts of the unit at an appropriately high level in which the student successfully engaged in higher thinking or performance skills. A student may receive a “D” (deficient progress) if they have not made a reasonable effort on one or more outcomes.

	TSW
	‘A’ Level Mastery
	‘B’ Level Mastery
	‘P’ Progress

	1. use pseudo code, flowcharts, or other graphical representations to outline algorithms used, which will be written before programming is commenced.
	Exceptional ability to use pseudo code, flowcharts, or other graphical representations to outline algorithms used. Interprets own pseudo code as well of that of others. Has the ability to point out minor and major mistakes in own and others pseudo code.
	Able to use basic pseudo code, flowcharts, or other graphical representations to outline algorithms. Able to locate major mistakes in own pseudo code
	Inability to use basic pseudo code, flowcharts, or other graphical representations to outline algorithms. Inability to find major mistakes in own pseudo code.

	2. use standard I/O (input/output) and file I/O.
	Exceptional ability to use standard and file I/O independently. Problem solves on his/her own.
	Uses standard I/O and file I/O. Needs some help solving problems.
	Inability to use standard and file I/O consistently.

	3. employ different forms of iteration (repeat-until, while-do, count control) in simple programs.
	Employs at least two different forms of iteration in simple programs. Demonstrates ability to pinpoint minor and major mistakes in own code and that of others.
	Employs two different forms of iteration in simple programs. Demonstrates ability to find major mistakes in own code.
	Inability to employ different forms of iteration. Does not comprehend the concept of iteration. Inability to pinpoint mistakes in own code.

	4. demonstrate and explain the concept of arrays.
	Cleary explains the concept of arrays. Can use and manipulate arrays independently.
	Can explain the concept of arrays on a limited basis. Needs some help using them in own code.
	Inability to demonstrate and explain the concept of arrays even with some help.

	5. demonstrate and explain the concept of records or equivalent data structures in simple programs.
	Clearly explains the concept of records or equivalent data structures. Can use and manipulate data structures independently.

	Can explain the concept of records or equivalent data structures. Needs some help using them in own code.
	Inability to demonstrate and explain the concept of records or equivalent data structures even with some help.

	6. use modularization (function usage) as a means of dividing a problem into subtasks.
	Utilizes modularization in own code without the need to follow examples. Ability to pinpoint and fix problems with modularization in own code and that of others
	Can use modularization by following examples.
	Inability to use modularization (function usage) as a means of dividing a problem into subtasks.

	7. develop algorithms to solve complex problems.
	Develops algorithms to solve complex problems in a direct/concise way, showing clear understanding of the complex problem to be solved.
	Develops algorithms to solve complex problems. Solutions might not always be created in the most direct/concise way.

	Inability to develop algorithms to solve complex problems.

	8. write well-documented, structured code.
	Always writes well-documented, clear, structured code. There is a logical flow through the code. Code is understandable by others.

	Able to write well- documented, structured code. Might need some reminders and assistance of others to accomplish this.

	Inability to write well-documented, structured code even with assistance of others.

PAGE
QSI TECHNOLOGY-12/13 S05
35

Copyright (2010

